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Abstract

We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-
empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global
coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully
performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the compu-
tational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be
obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimiza-
tion (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear
scaling methods, variational in nature, such as the orbital minimization (OM) procedure.
� 2006 Published by Elsevier Inc.
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1. Introduction and motivation

A central issue in computational quantum chemistry is the determination of the electronic ground state of a
molecular system. For completeness and self-consistency, we now briefly introduce the problem. In particular,
we present it in a mathematical way.
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1.1. Standard electronic structure calculations

A molecular system is composed of N electrons, modelled quantum mechanically, and a given number
of nuclei, the latter being considered as classical point-like particles clamped at known positions (Born–
Oppenheimer approximation). We refer to [7] for a general mathematical exposition and to [18,25] for
the chemical background. Determining the electronic ground state amounts to solving a time-independent
Schrödinger equation in R3N . This goal is out of reach for large values of N. In fact it is already infeasible
for values of N exceeding three or four, unless dedicated techniques are employed. Examples are stochas-
tic-like techniques such as diffusion Monte-Carlo approaches, or emerging techniques, such as sparse ten-
sor products techniques [23]. Approximations of the Schrödinger equation have been developed, such as
the widely used tight-binding, Hartree–Fock and Kohn–Sham models. For these three models, the numerical
resolution of a problem of the following type is required: given H and S, respectivement an Nb · Nb sym-
metric matrix and an Nb · Nb symmetric positive definite matrix (with Nb > N), compute a solution DH of
the problem
Hci ¼ �iSci; �1 6 � � � 6 �N 6 �Nþ1 6 � � � 6 �Nb ;

ct
iScj ¼ dij;

DH ¼
PN
i¼1

cict
i:

8>>><>>>: ð1:1Þ
Let us mention that most electronic structure calculations are performed with closed shell models [18], and
that, consequently, the integer N in (1.1) then is the number of electron pairs. We remark that when S is
the identity matrix, a solution DH to (1.1) is a solution to the problem
Find the orthogonal projector on the space spanned by the N eigenvectors

associated with the lowest N eigenvalues of H :

�
ð1:2Þ
In (1.2), and throughout this article, the eigenvalues are counted with their multiplicities. The N eigenvectors
ci, called generalized eigenvectors in order to emphasize the presence of the matrix S, represent the expansion
in a given Galerkin basis fvig16i6Nb

of the N one-electron wavefunctions. The matrix H is a mean-field Ham-
iltonian matrix. For instance, for the Kohn–Sham model, we have
Hij ¼
1

2

Z
R3

rvi � rvj þ
Z

R3

V vivj; ð1:3Þ
where V is a mean-field local potential. The matrix S is the overlap matrix associated with the basis fvig16i6Nb
:

Sij ¼
Z

R3

vivj: ð1:4Þ
In this article, we focus on the linear combination of atomic orbitals (LCAO) approach. This is a very efficient
discretization technique, using localized basis functions {vi}, compactly supported [29] or exhibiting a Gauss-
ian fall-off [18].

It is important to emphasize what makes the electronic structure problem, discretized with the LCAO
approach, specific as compared to other linear eigenvalue problems encountered in other fields of the engineer-
ing sciences (see [2,19] for instance). First, Nb is proportional to N, and not much larger than it (say Nb � 2N

to fix the ideas). Hence, the problem is not finding a few eigenvectors of the generalized eigenvalue problem
(1.1). Second, although the matrices H and S are sparse for large molecular systems (see Section 1.2 for
details), they are not as sparse as the stiffness and mass matrices usually encountered when using finite differ-
ence or finite element methods. For example, the bandwidth of H and S is of the order of 102 in the numerical
examples reported in Section 4. Note that, in contrast, for plane wave basis set discretizations (which will not
be discussed here), the parameter Nb is much larger than N (say Nb � 100N), the matrix S is the identity matrix
and the matrix H est full. Third, and this is a crucial point, the output of the calculation is the matrix DH and
not the generalized eigenvectors ci themselves. This is the fundamental remark allowing the construction of
linear scaling methods (see Section 1.2).
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A solution DH of (1.1) is
DH ¼ CHCt
H
; ð1:5Þ
where CH is a solution to the minimization problem
inf TrðHCCtÞ; C 2MNb;N ðRÞ; CtSC ¼ IN

� �
: ð1:6Þ
Note that the energy functional Tr HCCtð Þ can be given the more symmetric form Tr(CtHC). Here and below,
Mk;l denotes the vector space of the k · l real matrices. Notice that (1.6) has many minimizers: if CH is a min-
imizer, so is CHU for any orthogonal N · N matrix U. However, under the standard assumption that the Nth
eigenvalue of H is strictly lower than the (N + 1)th one, the matrix D* defined by (1.5) does not in fact depend
on the choice of the minimizer CH of (1.6). Notice also that (1.1) are not the Euler–Lagrange equations of (1.6)
but that any critical point of (1.6) is obtained from a solution of (1.1) by an orthogonal transformation of the
columns of CH = (c1|� � �|cN).

The standard approach to compute DH is to solve the generalized eigenvalue problem (1.1) and then con-
struct CH thus DH by collecting the lowest N generalized eigenvectors of H. This approach is employed when
the number N of electrons (or electron pairs) is not too large, say smaller than 103.
1.2. Linear scaling methods

One of the current challenges of Computational Chemistry is to lower the computational complexity N3 of
this solution procedure. A linear complexity N is the holy grail. There are various existing methods designed
for this purpose. Surveys on such methods are [6,17]. Our purpose here is to introduce a new method, based on
the domain decomposition paradigm. We remark that the method introduced here is not the first occurrence of
a method based on a decomposition of the matrix H [30], but a significant methodological improvement is
fulfilled with the present method. To the best of our knowledge, such methods only consist of local solvers
complemented by a crude global step. The method introduced below seems to be the first one really exhibiting
the local/global paradigm in the spirit of methods used in other fields of the engineering sciences. Numerical
observations confirm the major practical interest methodological improvement.

Why is a linear scaling plausible for computing DH? To justify the fact that the cubic scaling is an estimate
by excess of the computational task required to solve (1.1), we argue that the matrix does not need to be diag-
onalized. As mentioned above, only the orthogonal projector on the subspace generated by the lowest N eigen-
vectors is to be determined and not the explicit values of these lowest N eigenvectors. But in order to reach a
linear complexity, appropriate assumptions are necessary, both on the form of the matrices H and S, and on
the matrix DH solution to (1.1):

� (H1). The matrices H and S are assumed sparse, in the sense that, for large systems, the number of non-zero
coefficients scales as N. This assumption is not restrictive. In particular, it follows from (1.3) and (1.4) that it
is automatically satisfied for Kohn–Sham models as soon as the basis functions are localized in real space,
which is in particular the case for the widely used atomic orbital basis sets [7].
� (H2). A second assumption is that the matrix DH built from the solution to (1.1) is also sparse. This con-

dition seems to be fulfilled as soon as the relative gap
c ¼ �Nþ1 � �N

�Nb � �1

ð1:7Þ
deduced from the solution of (1.1) is large enough. As explained in Section 2 below, this observation can be
supported by qualitative physical arguments. On the other hand, we are not aware of any mathematical argu-
ment of linear algebra that would justify assumption (H2) in a general setting.

We assume (H1)–(H2) in the following. Current efforts aim at treating cases when the second assumption is
not fulfilled, which in particular corresponds to the case of conducting materials. The problem (1.2) is then
extremely difficult because the gap c in (1.7) being very small, the matrix D is likely to be dense. Reaching lin-
ear complexity is then a challenging issue, subject of ongoing works by several groups of researchers [8–13]. It
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therefore makes sense to improve in a first step the existing methods in the setting of assumption (H2), before
turning to more challenging issues.

Before we get to the heart of the matter, we would like to point out the following feature of the problem
under consideration.

In practice, problem (1.1) has to be solved repeatedly. For instance, it is the inner loop in a nonlinear min-
imization problem where H depends self-consistently on DH. We refer to [14,20] for efficient algorithms to iter-
ate on this nonlinearity and to [7] for a review on the subject. Alternatively, or in addition to the above,
problem (1.1) is parameterized by the positions of the nuclei (both the mean-field operator H and the overlap
matrix S indeed depend on these positions), and these positions may vary. This is the case in molecular
mechanics (find the optimal configuration of nuclei that gives the lowest possible energy to the molecular sys-
tem), and in molecular dynamics as well (the positions of nuclei follow the Newton law of motion in the mean-
field created by the electrons). In either case, problem (1.1) is not be solved from scratch. Because of previous
calculations, we may consider we have at our disposal a good initial guess for the solution. The latter comes
from e.g. previous positions of nuclei, or previous iterations in the outer loop of determination of H. In dif-
ficult cases it may even come from a previous computation with a coarse grained model. In other words, the
question addressed reads solving Problem (1.1) for some H + dH and S + dS that are small perturbations of

previous H and S for which the solution is known. This specific context allows for a speed up of the algorithm
when the initial guess is sufficiently good. This is the reason why, in the following, we shall frequently make
distinctions between bad and good initial guesses.

2. Localization in quantum chemistry

The physical system we consider is a long linear molecule (for instance a one-dimensional polymer or a
nanotube). Let us emphasize that we do not claim a particular physical relevance of this system. This is for
the purpose of illustration. We believe the system considered to be a good representative of a broad class
of large molecular systems that may be encountered practically. Considering a one-dimensional situation is
of course an oversimplification of all the technicalities of the general three-dimensional problem that is of
practical interest. However, from the mathematical viewpoint, it does not significantly change the landscape.
This is for the purpose of avoiding unnecessary technicalities related to the ‘‘geometrical’’ tiling of the molec-
ular system into a set of disjoint zones. Section 3.5 below describes the necessary adaptation of our strategy to
allow for the treatment of three-dimensional systems.

Our one-dimensional setting is the following. Each atomic orbital vi is centered on one nucleus. Either it is
supported in a ball of small radius [26] (in comparison to the size of the macromolecule under study), or it has
a rapid exponential-like or Gaussian-like [16] fall-off. The atomic orbitals are numbered following the orien-
tation of the molecule. Then, the mean-field Hamiltonian matrix H whose entries are defined by (1.3) has the
band structure shown in Fig. 1.

Although the eigenvectors of H are a priori delocalized (most of their coefficients do not vanish), it seems to
be possible to build a S-orthonormal basis of the subspace generated by the lowest N eigenvectors of H, con-
sisting of localized vectors (only a few consecutive coefficients are non-zero). This is motivated by a physical
argument of locality of the interactions [22]. For periodic systems, the localized vectors correspond to the so-
called Wannier orbitals [4]. It can be proven that in this case, the larger the band gap, the better the localiza-
bN

bNH  = 

0

0

Fig. 1. Band structure of the symmetric matrix H.
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tion of the Wannier orbitals [21]. For insulators, the Wannier orbitals indeed enjoy an exponential fall-off rate
proportional to the band gap. For conductors, the fall-off is only algebraic. As mentioned in Section 1, we only
consider here the former case. This allows us to assume that there exists some integer q� Nb, such that Nb/q is
an integer, for which all of these localized functions can be essentially expanded on q consecutive atomic orbi-
tals. Denoting by n = 2q, we can therefore assume a good approximation of a solution CH to (1.6) exists, with
the block structure displayed in Fig. 2. Note that each block Ci only overlaps with its nearest neighbors. Cor-
respondingly, we introduce the block structure of H displayed in Fig. 3. The matrix D constructed from a
block matrix C using (1.5) has the structure represented in Fig. 4 and satisfies the constraints D = Dt,
D2 = D, Tr(D) = N.

Let us point out that the integers q and n = 2q depend on the band gap, not on the size of the molecule. The
condition n = 2q is only valid for S ¼ INb . For S 6¼ INb , it is replaced by n = 2q + nbs where 2nbs � 1 is the
bandwidth of the matrix S.
bN  = (p+1) n/2 

C1

C  = 

0

0n

Cp

m

N = m  + ... + m

m

1 p

p

1

Fig. 2. Block structure of the matrices C. Note that by construction each block only overlaps with its nearest neighbors.

Hp
H  = 

0

0

n

N  = (p+1) n/2 b

H1

Fig. 3. Block structure of the matrix H.

0

0

n

N  = (p+1) n/2 b

D  = 

Fig. 4. Block structure of the matrix D.
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The domain decomposition algorithm we propose aims at searching an approximate solution to (1.6) that
has the block structure described above.

For simplicity, we now present our method assuming that S ¼ INb , i.e. that the Galerkin basis fvig16i6Nb
is

orthonormal. The extension of the method to the case when S 6¼ INb is straightforward. Problem (1.6) then
reads
inf TrðHCCtÞ; C 2MNb;N ðRÞ; CtC ¼ IN

� �
: ð2:1Þ
Our approach consists in solving an approximation of problem (2.1) obtained by minimizing the exact energy
Tr(HCCt) on the set of the matrices C which have the block structure displayed in Fig. 2 and satisfy the con-
straint CtC = IN. The resulting minimization problem can be recast as
inf
Xp

i¼1

TrðHiCiC
t
iÞ; Ci 2Mn;miðRÞ; mi 2 N; Ct

iCi ¼ Imi 81 6 i 6 p;

(

Ct
iTCiþ1 ¼ 0 81 6 i 6 p � 1;

Xp

i¼1

mi ¼ N

)
: ð2:2Þ
In the above formula, T 2Mn;nðRÞ is the matrix defined by
T kl ¼
1 if k � l ¼ q;

0 otherwise;

�
ð2:3Þ
and H i 2Mn;nðRÞ is a symmetric submatrix of H (see Fig. 3). Indeed,
C 1 

0 

0 

C p 

C 1 

H p 

H 1 

Ci H i  Tr

t

0 

0 

C p 

Tr
t

C i Σ  = 

 p

 i=1
and
C 1 C 1 

0 

0 

C p 

Ci Ci 
t

Ci+1 

0 

0 

C p 

 = 

t

0 

0 

t
i C T
In this way, we replace the NðNþ1Þ
2

global scalar constraints CtC = IN involving vectors of size Nb, by thePp
i¼1

miðmiþ1Þ
2

local scalar constraints Ct
iCi ¼ Imi and the

Pp�1
i¼1 mimiþ1 local scalar constraints Ct

iTCiþ1 ¼ 0, involv-

ing vectors of size n. We would like to emphasize that we can obtain in this way a basis of the vector space

generated by the lowest N eigenvectors of H, but not the eigenvectors themselves. This method is therefore not

directly applicable to standard diagonalization problems.
Our algorithm searches for the solution to (2.2), not to (2.1). More rigorously stated, we search for the solu-

tion to the Euler–Lagrange equations of (2.2):
H iCi ¼ CiEi þ T tCi�1Ki�1;i þ TCiþ1K
t
i;iþ1; 1 6 i 6 p;

Ct
iCi ¼ Imi ; 1 6 i 6 p;

Ct
iTCiþ1 ¼ 0; 1 6 i 6 p � 1;

8><>: ð2:4Þ
where by convention
C0 ¼ Cpþ1 ¼ 0: ð2:5Þ
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The matrices (Ei)16i6p and (Ki,i+1)16i6p�1, respectively, denote the matrices of Lagrange multipliers associated
with the orthonormality constraints Ct

iCi ¼ Imi and Ct
iTCiþ1 ¼ 0. The mi · mi matrix Ei is symmetric. The ma-

trix Ki,i+1 is of size mi · mi+1. The above equations can be easily derived by considering the Lagrangian
LðfCig; fEig; fKi;iþ1gÞ ¼
Xp

i¼1

TrðHiCiC
t
iÞ þ

Xp

i¼1
TrððCt

iCi � ImiÞEiÞ þ
Xp�1

i¼1

TrðCt
iTCiþ1K

t
i;iþ1Þ:
The block structure imposed on the matrices clearly lowers the dimension of the search space we have to
explore. However, this simplification comes at a price. First, problem (2.2) only approximates problem (2.1).
Second, (2.2) may have local, non-global, minimizers, whereas all the local minimizers of (2.1) are global.
There are thus a priori many spurious solutions of the Euler Lagrange equations (2.4) associated with (2.2).

A point is that the sizes (mi)16i6p are not a priori prescribed. In our approach, they are adjusted during the
iterations. We shall see how in the sequel.
3. Description of the domain decomposition algorithm

3.1. Description of a simplified form

For pedagogic purpose, we first consider the following problem
inf hH 1Z1; Z1i þ hH 2Z2; Z2i; Zi 2 RNb ; hZi; Zii ¼ 1; hZ1; Z2i ¼ 0
� �

: ð3:1Þ
Problem (3.1) is a particular occurrence of (2.2). We have denoted by ÆÆ , Ææ the standard Euclidean scalar prod-
uct on RNb .

For (3.1), the algorithm is defined in the following simplified form. Choose ðZ0
1; Z

0
2Þ satisfying the con-

straints and construct the sequence ðZk
1; Z

k
2Þk2N by the following iteration procedure. Assume ðZk

1; Z
k
2Þ is known,

then

� Local step: Solve
eZ k
1 ¼ arginffhH 1Z1; Z1i; Z1 2 RNb ; hZ1;Z1i ¼ 1; hZ1; Zk

2i ¼ 0g;eZ k
2 ¼ arginffhH 2Z2; Z2i; Z2 2 RNb ; hZ2;Z2i ¼ 1; heZ k

1; Z2i ¼ 0g:

(
ð3:2Þ
� Global step: Solve
a� ¼ arginffhH 1Z1; Z1i þ hH 2Z2; Z2i; a 2 Rg; ð3:3Þ

where
Z1 ¼
eZ k

1 þ aeZ k
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p ; Z2 ¼

�aeZ k
1 þ eZ k

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p ð3:4Þ
and set
Zkþ1
1 ¼

eZ k
1 þ a�eZ k

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ða�Þ2

q ; Zkþ1
2 ¼ �a�eZ k

1 þ eZ k
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ða�Þ2
q : ð3:5Þ
In the kth iteration of the local step, we first fix Z2 ¼ Zk
2 and optimize over Z1 to obtain eZ k

1. Then we fix
Z1 ¼ eZ k

1 and optimize over Z2 to obtain eZ k
2. This local step monotonically reduces the objective function,

however, it may not converge to the global optimum. The technical problem is that the Lagrange multipliers
associated with the constraint ÆZ1,Z2æ = 0 may converge to different values in the two subproblems associ-
ated with the local step. In the global step, we optimize the sum ÆH1Z1,Z1æ + ÆH2Z2,Z2æ over the subspace
spanned by eZ k

1 and eZ k
2, subject to the constraints in (3.1). The global step again reduces the value of the

objective function since eZ k
1 and eZ k

2 are feasible in the global step. It can be shown that the combined algo-
rithm (local step + global step) monotonically decreases the objective function and globally converges to an
optimal solution of (3.1).
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This algorithm operates at two levels: a fine level where we solve two problems of dimension Nb rather than
one problem of dimension 2Nb; a coarse level where we solve a problem of dimension 2. Left by itself, the fine
step converges to a suboptimal solution of (3.1). Combining the fine step with the global step yields conver-
gence to a global optimum.

In addition to providing a pedagogic view on the general algorithm presented in the following section, the
simplified form (3.2)–(3.5) has a theoretical interest. In contrast to the general algorithm for which we cannot
provide a convergence analysis, the simplified form (3.2)–(3.5) may be analyzed mathematically, at least in the
particular situation when H1 = H2 = H. Then solving (3.1) amounts to searching for the lowest two eigenel-
ements of the matrix H. Notice that the global step (3.3)–(3.5) is then unnecessary because the functional to
minimize in (3.3) does not depend on a.

However, we can show that the iterations (3.2) converge in the following sense. The two-dimensional
vector space spanned by the lowest two eigenvalues of H is reached asymptotically. This occurs under
an appropriate condition on the matrix H. The latter is a condition of separation of the eigenvalues,
namely �2 � �1 < �3 � �2 with obvious notation. The gap �3 � �2 gives the speed of convergence. For brev-
ity, we do not detail the proof here (see [5]). Future work on the numerical analysis of more general cases
is in progress.
3.2. Description of the algorithm

We define, for all p-tuple (Ci)16i6p,
EððCiÞ16i6pÞ ¼
Xp

i¼1

TrðH iCiC
t
iÞ; ð3:6Þ
and set by convention
U 0 ¼ Up ¼ 0: ð3:7Þ

We introduce an integer �, initialized to one, that will alternate between the values zero and one during the
iterations.

At iteration k, we have at hand a set of block sizes ðmk
i Þ16i6p and a set of matrices ðCk

i Þ16i6p such that

Ck
i 2Mn;mk

i ðRÞ, ½Ck
i �

tCk
i ¼ Imk

i
, ½Ck

i �
tTCk

iþ1 ¼ 0. We now explain how to compute the new iterate ðmkþ1
i Þ16i6p,

ðCkþ1
i Þ16i6p.

3.2.1. Multilevel domain decomposition algorithm

� Step 1: Local fine solver.

(a) For each i, diagonalize the matrix H2i+� in the subspace
V k
2iþ� ¼ x 2 Rn; Ck

2iþ��1

� �t
Tx ¼ 0; xtTCk

2iþ�þ1 ¼ 0
n o

;

i.e. diagonalize P k
2iþ�H 2iþ�P k

2iþ� where P k
2iþ� is the orthogonal projector on V k

2iþ�. This provides (at least)
n� mk

2iþ��1 � mk
2iþ�þ1 real eigenvalues kk

2iþ�;1 6 kk
2iþ�;2 6 � � � and associated orthonormal vectors xk

2iþ�;j. The latter

are T-orthogonal to the column vectors of Ck
i�1 and Ck

iþ1.
(b) Sort the eigenvalues ðkk

2iþ�;jÞi;j in increasing order, and select the lowest
P

im2iþ� of them. For each i,

collect in block #2i + � the eigenvalues kk
2iþ�;j selected. New intermediate block sizes �mk

2iþ� are defined.
(c) For each i, collect the lowest �mk

2iþ� vectors xk
2iþ�;j in the n	 �mk

2iþ� matrix Ck
2iþ�.

(d) For each i, diagonalize the matrix H2i+�+1 in the subspace
V k
2iþ�þ1 ¼ x 2 Rn; Ck

2iþ�
� �t

Tx ¼ 0; xtT Ck
2iþ�þ2 ¼ 0

n o

in order to get eigenvalues kk

2iþ�þ1;1 6 kk
2iþ�þ1;2 6 � � � and associated orthonormal vectors xk

2iþ�þ1;j. The latter are

T-orthogonal to the column vectors of Ck
2iþ� and Ck

2iþ�þ2.
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(e) Sort all the eigenvalues fðkk
2iþ�þ1;jÞi;j; ðk

k
2iþ�;jÞi;jg in increasing order. Select the lowest N. For each l,

collect in block #l the eigenvalues kk
l;j selected. New intermediate block sizes ðmkþ1

l Þ16l6p are thus
defined.

(f) Set eCk
l ¼ ½xk

l;1j � � � jxk
l;mkþ1

l
�.

(g) Replace � by 1 � � and proceed to step 2 below.

� Step 2: global coarse solver. Solve
U� ¼ arginfff ðUÞ; U ¼ ðU iÞi 81 6 i 6 p � 1; Ui 2Mmiþ1;miðRÞg; ð3:8Þ

where
f ðUÞ ¼ E CiðUÞðCiðUÞtCiðUÞÞ�1=2
� 	

i

� 	
; ð3:9Þ
and
CiðUÞ ¼ eCk
i þ T eCk

iþ1Uið½eCk
i �

tTT t eCk
i Þ � T t eCk

i�1U t
i�1ð½eCk

i �
tT tT eCk

i Þ: ð3:10Þ
Next set, for all 1 6 i 6 p,
Ckþ1
i ¼ CiðU�ÞðCiðU�ÞtCiðU�ÞÞ�1=2

: ð3:11Þ

Note that ½Ckþ1

i �
tTCkþ1

iþ1 ¼ 0 (this follows from T2 = 0).

We think of the even indexed unknowns C2i as the black variables and the odd indexed unknowns C2i+1 as
the white variables. In the first phase of the local fine solver, we optimize over the white variables while holding
the black variables fixed. In the second phase of the local fine solver, we optimize over the black variables
while holding the white variables fixed. In the global step, we perturb each variable by a linear combination
of the adjacent variables. The matrices U ¼ ðU iÞi in (3.8) play the same role as the real parameter a in (3.3).
The perturbation is designed so that the constraints are satisfied. The optimization is performed over the
matrices generating the linear combinations. In the next iteration, we interchange the order of the optimiza-
tions: first optimize over the black variables while holding the white variables fixed, then optimize over the
white variables while holding the black variables fixed.

Let us point out that an accurate solution to (3.8) is not needed. In practice, we reduce the computational
cost of the global step, by using again a domain decomposition method. The blocks (Ci)16i6p are collected in r

overlapping groups (Gl)16l6r as shown in Fig. 5. Problem (3.8) is solved first for the blocks (G2l+1), next for the
blocks (G2l). Possibly, this procedure is repeated a few times. The advantage of this strategy is that the com-
putational time of the global step scales linearly with N. In addition, it is parallel in nature. The solution of
(3.8) for a given group is performed by a few steps of a Newton-type algorithm. Other preconditioned iterative
methods could also be considered.

3.3. Comments on the local step

The local step is based on a checkerboard iteration technique.
When � = 1, steps 1a–1c search for a solution ð�mk

2iþ1;C
k
2iþ1Þi to the problem
81 2 4 9 10

G1

G2

G3

3 5 6 7

Fig. 5. Collection of p = 10 blocks into r = 3 groups.
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inf
X

i

Tr H 2iþ1C2iþ1Ct
2iþ1


 �
; C2iþ1 2Mn;m2iþ1ðRÞ; Ct

2iþ1C2iþ1 ¼ Im2iþ1
;

(

½Ck
2i�

tTC2iþ1 ¼ 0; Ct
2iþ1TCk

2iþ2 ¼ 0; m2iþ1 2 N;
X

i

m2iþ1 ¼
X

i

mk
2iþ1

)
:

During steps 1a–1c, the ‘‘white’’ blocks Ck
2i are kept fixed. The ‘‘black’’ blocks Ck

2iþ1 are optimized under the
orthogonality constraints imposed by the ‘‘white’’ blocks. A point is that most of the computational effort can
be done in parallel. Indeed, for p even, say, performing step 1a amounts to solving p/2 independent diagonal-
ization problems of size n.

Likewise, steps 1d–1f solve
inf
Xp

i¼1

Tr HiCiC
t
i


 �
; Ci 2Mn;miðRÞ; Ct

iCi ¼ Imi ; mi 2 N;
X

i

mi ¼ N ;

(

½Ck
2j�1�

tTC2j ¼ 0; ½C2j�tT ½C2jþ1�k ¼ 0; 0 6 m2jþ1 6 �mk
2jþ1; C2jþ1 
 Ck

2jþ1

)
;

where the notation C2jþ1 
 Ck
2jþ1 means that each column of C2j+1 is a column of Ck

2jþ1. Here again, most of
the computational effort can be performed in parallel.

When � = 1, ‘‘black’’ vectors (i.e. vectors belonging to blocks with odd indices) are allowed to become
‘‘white’’ vectors, but the reverse is forbidden. In order to symmetrize the process, � is replaced by 1 � � in
the next iteration.

We wish to emphasize that, although called local, this step already accounts for some global concern.
Indeed, and it is a key point of the local step, substeps (b) and (e) sort the complete set of eigenvalues generated
locally. This, together with the update of the size mi of the blocks, allows for a preliminary propagation of the
information throughout the whole system. The global step will complement this.

Finally, let us mention that in the local steps, (approximate) T-orthogonality is obtained by a Householder
orthonormalization process. The required orthonormality criterion is
81 6 i 6 p � 1; ½eCk
i �

tT eCk
iþ1

��� ��� 6 �L; ð3:12Þ
where �L > 0 is a threshold to be chosen by the user.

3.4. Comments on the global step

Let us briefly illustrate the role played by the global step. For simplicity, we consider the case of two blocks
of same initial size m1 = m2 = m and we assume that m1 and m2 do not vary during the iterations. If only the
local step is performed, then the new iterate
ðCkþ1
1 ;Ckþ1

2 Þ ¼ ðeCk
1;
eCk

2Þ
does not necessarily satisfies (2.4). Indeed, there is no reason why the Lagrange multipliers corresponding to
the two constraints CtTCk

2 ¼ 0 (step 1a when � = 1) on the one hand and ½eCk
1�

tTC ¼ 0 (step 1d when � = 1) on
the other hand should be the same. The global step asymptotically enforces the equality of Lagrange multipli-
ers. This is a way to account for a global feature of the problem.

Let us emphasize this specific point. Assume U* = 0 in the global step of the kth iteration of the algorithm,
or in other words that the global step is not effective at the kth iteration. Then it implies that the output
ðeC1; eC2Þ ¼ ðeCk

1;
eCk

2Þ of the local step already satisfies (2.4). Indeed,
f ðUÞ ¼ TrðJ 1ðUÞC1ðUÞtH 1C1ðUÞÞ þ TrðJ 2ðUÞC2ðUÞtH 2C2ðUÞÞ ð3:13Þ
with Ji(U) = (Ci(U)tCi(U))�1 for i = 1,2. Since
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ðJ 1ðUÞÞ�1 ¼ Im þ eCt
1TT t eC1

� 	
Ut eCt

2T tT eC2

� 	
U eCt

1TT t eC1

� 	
;

ðJ 2ðUÞÞ�1 ¼ Im þ eCt
2T tT eC2

� 	
U eCt

1TT t eC1

� 	
U t eCt

2T tT eC2

� 	
;

we have $J1(0) = $J2(0) = 0. The matrix U being a square matrix of dimension m, for all 1 6 i, j 6 m,
1

2

of
oUij
ð0Þ ¼ Tr

oC1

oU ij
ð0Þ


 �t

H 1
eC1

� �
þ Tr

oC2

oUij
ð0Þ


 �t

H 2
eC2

� �
¼ eCt

1TT t eC1

� 	eCt
1H 1T eC2

� 	
ji
� eCt

1TH 2
eC2

eCt
2T tT eC2

� 	� 	
ji

¼ eCt
1TT t eC1

� 	
ðK1 � K2Þ eCt

2T tT eC2

� 	� 	
ji
; ð3:14Þ
where K1 and K2 are defined by
H 1
eC1 ¼ eC1E1 þ T eC2K

t
1;

H 2
eC2 ¼ eC2E2 þ T t eC1K2:

(
ð3:15Þ
As U* = 0 implies
81 6 i; j 6 m;
of

oUij
ð0Þ ¼ 0; ð3:16Þ
we conclude that K1 = K2 if the matrices eCt
1TT t eC1

� 	
and eCt

2T tT eC2

� 	
are invertible, which is generally the

case when n� 2m. Consequently, (2.4) is satisfied by ðeC1; eC2Þ.
On the other hand, when n is not much larger that 2m, the above matrices are not invertible and (2.4) is

usually not satisfied. In this case, the global step is slightly modified in order to recover (2.4) and thus improve
the efficiency of the global step. We replace (3.10) by
81 6 i 6 p; CiðUÞ ¼ eCk
i þ T bCk

iþ1U i ½bCk
i �

tTT t bCk
i

� 	
� T t bCk

i�1U t
i�1 ½bCk

i �
tT tT bCk

i

� 	
; ð3:17Þ
where bCk
i is a block formed by vectors collected in the vector space defined by eCk

i . These vectors are selected
using a modified Gram–Schmidt orthonormalization process. The size of the blocks bCk

i is appropriately cho-
sen. The larger the blocks bCk

i , the more precise the global step but the worse the conditioning of the optimi-
zation problem. In addition, since the global step is the most demanding step of the algorithm, considerations
both on the computational time and in terms of memory are accounted for when fixing the sizes of the blocksbCk

i .
Our numerical experiments show that when the global step is performed (using (3.10) or (3.17), depending

on n and m), the blocks ðCkþ1
i Þi do not exactly satisfy the orthonormality constraint, owing to evident round-

off errors. All the linear scaling algorithms have difficulties in ensuring this constraint and our MDD approach
is no exception. The tests performed however show that the constraint remains satisfied throughout the iter-
ations within a good degree of accuracy.

3.5. On systems of higher dimensions

The present section briefly describes how the above strategy should be adapted to treat three-dimensional
systems.

In the one-dimensional situation addressed above that is, when the physical system under study is, say, a
linear polymer, the system is decomposed into a sequence of segments. Each segment overlaps with the pre-
vious and the next ones, in the sense that the basis functions attached to this segment have a non-zero overlap
with the basis functions of the adjacent segments. On the other hand, in a system of dimension higher than or
equal to two, the number of adjacent zones increases. In dimension 1, considering the overlap of the nth block
with the (n � 1)th one and the (n + 1)th one is enough. In dimension 2, say for a thin film, there are 8 such
neighboring blocks, in dimension 3 (case of a bulk crystal) there are 26. All this is a technical issue, which will
definitely have an impact on the difficulty of the implementation of the method. It will have only a limited
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impact on its efficiency. In a nutshell, the ‘‘black and white’’ parallel strategy described in the previous sections
needs to be adequately modified. But this is a generic difficulty of all domain decomposition method in the
engineering sciences, which is thus well documented and controlled. Additionally, an increasing number of
orthogonality constraints is to be accounted for in the local problems, but, again, this is no conceptual
obstruction. Current research is directed toward the adaptation of our method to the multidimensional case,
following the lines described above.

4. Numerical tests

An extensive set of numerical tests was performed to illustrate the important features of the domain decom-
position algorithm introduced above, and to compare it with a standard scheme, commonly used in large scale
electronic structure calculations.

4.1. Setting of the algorithm and of the tests

4.1.1. Molecular systems used for the tests

Numerical tests on the algorithm presented above were performed on three chemical systems. The first two
systems both have formula COH–ðCOÞnm

–COH. They differ in their carbon–carbon interatomic distances. For
system P1, this distance is fixed to 5 atomic units, while it is fixed to 4 for system P2. On the other hand, our
third system, denoted by P3 has formula CH3–ðCH2Þnm

–CH3.
For each of the three systems P1, P2, P3, several numbers nm of monomers were considered. A geometry

optimization was performed using the GAUSSIAN package [32] in order to fix the internal geometrical
parameters of the system. The only exception to this is the carbon–carbon distance for P1 and P2, which,
as said above, is fixed a priori. Imposing the carbon–carbon distance allows to control the sparsity of the
matrices H and S (the larger the distance, the sparser the matrices). Although not physically relevant, fixing
the carbon–carbon distance is therefore useful for the purpose of numerical tests.

4.1.2. Data, parameters and initialization
For an extremely large number nm of monomers, the matrices H, S, and DH cannot be generated directly

with the GAUSSIAN package. We therefore make a periodicity assumption. For large values of nm, these
matrices approach a periodic pattern (leaving apart, of course, the ‘‘boundary layer’’, that is the terms involv-
ing orbitals close to one end of the linear molecule). So, we first fix some nm sufficiently large, but for which a
direct calculation with Gaussian is feasible, and construct H, S. The matrices H and S, as well as the ground-
state density matrix DH, and the ground-state energy E0, are then obtained for arbitrary large nm assuming
periodicity out of the ‘‘boundary layer’’. Likewise, the gap c in the eigenvalues of H is observed to be constant,
for each system, irrespective of the number nm of polymers, supposedly large. Proceeding so, the gap for sys-
tems P1, P2, and P3 is, respectively, evaluated to 0.00104, 0.00357, and 0.0281.

For our MDD approach, localization parameters are needed. They are shown in Table 1 below. Addition-
ally, we need to provide the algorithm with an initial guess on the size mi of the blocks. Based on physical
Table 1
Localization parameters and initial size of the blocks used in the tests

P1 P2 P3

n 130 200 308
q 50 80 126
Bandwidth of S 59 79 111
Bandwidth of H 99 159 255
Cut-off for entries of H 10�12 10�12 10�10

Cut-off for entries of D 10�11 10�11 10�7

Size of first block m1 = 67 m1 = 105 m1 = 136
Size of last block mp = 67 mp = 106 mp = 137
Size of a generic block mi = 56 mi = 84 mi = 104
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considerations on the expected repartition of the electrons in the molecule and on the expected localization of
the orbitals, the sizes were fixed to values indicated in Table 1. The specific block Ci is then initialized in one of
the following three manners:

� strategy I1: the entries of C are generated randomly, which of course generically yields a bad initial guess
way;
� strategy I2: each block Ci consists of the lowest mi (generalized) eigenvectors associated to the correspond-

ing block matrices Hi and Si in the matrices H and S, respectively. This provides with an initial guess,
depending on the matrices H and S, thus of better quality than the random one provided by strategy I1;
� strategy I3: the initial guess provided by I2 is optimized with the local fine solver described in Section 3.2.

4.1.3. Implementation details

Exact diagonalizations in the local steps are performed with the routine dsbgv.f from the LAPACK package
[1]. In the global step, the resolution of the linear system involving the Hessian matrix is performed iteratively,
using SYMMLQ [31]. Diagonal preconditioning is used to speed up the resolution.

The calculations have been performed using only one processor of a bi-processor Intel Pentium
IV-2.8 GHz.

4.1.4. Criteria for comparison of results
For assessment of the quality of the results, we have used two criteria, regarding the ground-state energy

and the ground-state density matrix, respectively. For either quantity, the reference calculation is the calcula-
tion using the Gaussian package [32]. The quality of the energy is measured using the relative error eE ¼ jE�E0j

jE0j
.

For evaluation of the quality of the density matrix, we use the L1 matrix norm
e1 ¼ sup
ði;jÞ s:t: jHij j6e

jDij � ½DH�ijj; ð3:18Þ
where we fix e = 10�10. The introduction of the norm (3.18) is consistent with the cut-off performed on the
entries of H (thus the exact value of e chosen). Indeed, in practice, the matrix D is only used for the calcula-
tions of various observables (for instance electronic energy and Hellman–Feynman forces), all of the form
Tr(AD) where the symmetric matrix A shares the same pattern as the matrix H (see [7] for details). The result
is therefore not sensitive to entries with indices (i, j) such that |Hij| is below the cut-off value.

4.2. Illustration of the role of the local and global steps

Our MDD method consists in three ingredients:

� the local optimization of each block performed in the local step;
� the transfer of vectors from some blocks to other blocks, along with the modification of the block sizes mi,

again in the local step;
� the optimization performed in the global step.

To highlight the necessity of each of the ingredients, and their impacts on the final result, we compare our
MDD algorithm with three simplified variants. Let us denote by:

� strategy S1: local optimization of the blocks, without allowing variations of the block sizes, and no global
step;
� strategy S2: full local step (as defined in Section 3.2), no global step;
� strategy S3: local optimization of the blocks, without allowing for variations of the block sizes, and global

step;
� strategy S4: full algorithm.
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We compare the rate of convergence for the above four strategies. Two categories of tests are performed,
depending on the quality of the initial guess. The results displayed in Figs. 6–9 concern polymer P1 with
nm = 801 monomers. This corresponds to Nb = 8050 and N = 5622. Analogous tests were performed on P2

and P3, but we do not present them here, for brevity.
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Fig. 6. Energy error versus CPU time obtained with a bad initial guess ðI1Þ.
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Fig. 7. Density error versus CPU time obtained with a bad initial guess ðI1Þ.
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Fig. 8. Energy error versus CPU time obtained with a better initial guess ðI2Þ.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

10

10

10

10
0

CPU Time in seconds

D
en

si
ty

 e
rr

or

S1
S2
S3
S4

Fig. 9. Density error versus CPU time obtained with a better initial guess ðI2Þ.
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The energy of the ground state of this matrix (i.e. the minimum of (1.6)) is E0 = �27663.484. The number of
blocks considered is p = 100. For the global step, we have collected these 100 blocks in 99 overlapping groups
of 2 blocks. Interestingly, such a partition provides with optimal results regarding CPU time and memory
requirement. It is observed in Figs. 6–9 that S1, S2 and S3 are not satisfactory for they converge towards
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some local, non-global, minima of (2.2) whatever the initial guess. The failure of the strategy S3 performed on
the initial guess I2 is surprising: this initial guess is not good enough. Indeed, if the initial guess is I3, we
check numerically that the strategies S3 and S4 behave identically. Notice that the strategy I3 is identical
to S2 applied to the initial guess I2.

We also remark that the strategy S4 performs very well whatever the initial guess (see Figs. 7 and 9).
The same behavior is observed for the polymers P2 and P3. Finally, after orthonormalization, the density
matrix minimization (DMM) method [24] failed with the random initial guess and reveals very slow
with the initial guess I2. That is the reason why we consider the initial guess I3 to compare these
methods.

4.3. Comparison with two other methods

Having emphasized the usefulness of all the ingredients of our MDD algorithm, we now compare it to two
other algorithms:

� the diagonalization routine dsbgv.f from the LAPACK library;
� the density matrix minimization (DMM) method [24].

These two algorithms are seen as prototypical approaches for standard diagonalization algorithms and lin-
ear scaling techniques, respectively. They are only used here for comparison purposes. Regarding linear scal-
ing methods, two other popular approaches are the Fermi Operator method [17] and the McWeeny iteration
method [27]. We have observed that, at least in our own implementation, based on the literature, they are out-
performed by the DMM method for the actual chemical systems we have considered. We therefore take DMM
as a reference method for our comparison.

Recall that the routine dsbgv.f consists in the three-step procedure:

� transform the generalized eigenvalue problem into a standard eigenvalue problem by applying a Cholesky
factorization to S;
� reduce the new matrix to be diagonalized to a tridiagonal form;
� compute its eigenelements by using the implicit QR method.

The algorithmic complexity of this approach is in N 3
b and the required memory scales as N 2

b.
For the description of DMM method, we refer to [24]. Let us only mention here that this approach consists

in a minimization procedure, applied to the energy expressed in terms of the density matrix. Both the algorith-
mic complexity and the memory needed for performing the DMM approach scale linearly with respect to the
size Nb of the matrix. The DMM method is initialized with the density matrix D = CCt computed with the
initial guess C of the domain decomposition method. Two important points for the tests shown below are
the following.

First, we perform a cut-off on the coefficients on the various matrices manipulated throughout the calcu-
lation: only the terms of the density matrices within the frame defined in Fig. 4 are taken into account. Such
a cut-off has some impact on the qualities of the results obtained with the DMM method. We are however not
able to design a better comparison.

Second, the DMM method requires the knowledge of the Fermi level (as is the case for the linear
scaling methods commonly used in practice to date). The determination of the Fermi level is the purpose
of an outer optimization loop. In contrast, the MDD approach computes an approximation of the Fermi
level at each iteration. Here, for the purpose of comparison, we provide DMM with the exact value of the
Fermi level. Consequently, the CPU times for the DMM method displayed in the sequel are
underestimated.

We emphasize that the routine dsbgv.f computes the entire spectrum of the matrix, both eigenvalues and
eigenvectors. In contrast, the MDD approach only provides with the lowest N eigenvalues, among Nb, and
the projector on the vector space spanned by the corresponding eigenvectors, not the eigenvectors
themselves.
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4.3.1. Comparison with direct diagonalization and DMM

We have computed the ground states of the polymers P1, P2 and P3 with the three methods (direct diag-
onalization, DMM and MDD) and for various numbers nm of monomers, corresponding to matrix sizes Nb in
the range 103–105.

For DMM and MDD, the initial guess is generated following the strategy I3.
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Fig. 10. Scaling of the CPU time (top) and memory requirement (bottom) for the polymer P1.
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The results regarding the CPU time at convergence and the memory requirement are displayed in Figs. 10–
12 for the polymers P1, P2, and P3, respectively.

For small values of Nb, i.e. up to around 104, the results observed for the direct diagonalization, DMM and
MDD agree. The CPU times for our MDD approach scale linearly with Nb.
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Fig. 11. Scaling of the CPU time (top) and memory requirement (bottom) for the polymer P2.
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For larger values of Nb, the limited memory prevented us from either performing an exact diagonalization
or from implementing DMM. So, we extrapolate the CPU time and memory requirement according to the
scaling observed for smaller Nb.

The data for the DMM method are not plotted in Fig. 12 as the DMM method does not converge for the
polymer P3 when the number of monomers exceeds 103. From our point of view, it comes from the truncation
errors which cause the divergence of the method (note that the truncation strategy we consider here is very
simple).
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4.3.2. Comparison with DMM and a hybrid strategy

We now concentrate on the two approaches that scale linearly, namely DMM and MDD. We consider:

� P1 with 4001 monomers, corresponding to Nb = 40050,
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Fig. 13. Evolution of the density error with the CPU time for the polymer P1 made of 4001 monomers.
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� P2 with 2404 monomers, corresponding to Nb = 24080,
� P3 with 208 monomers, corresponding to Nb = 854.

These particular values have been chosen for the purpose of having simple values for the numbers of blocks.
For each of the three polymers, we compare the DMM and MDD methods initialized by the strategy I3 and a
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Fig. 15. Evolution of the density error with the CPU time for the polymer P3 made of 208 monomers.
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hybrid strategy. The hybrid strategy consists of a certain number of iterations performed with MDD, until
convergence is reached for this method, followed by iterations with DMM. We use the following stopping cri-
terion for MDD:
Fig
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. 17. Evolution of the MDD energy and density errors versus CPU time for the polymer P2 (12004 monomers, Nb = 120080).
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g. 18. Evolution of the MDD energy and density errors versus CPU time for the polymer P3 (5214 monomers, Nb = 36526).
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where �a is a threshold parameter. We take �a = 10�4, respectively, �a = 10�3, for the polymer P1, respectively,
P2 and P3.

Figs. 13–15 show the evolution of the error in density versus CPU time. The hybrid version is demonstrated
to be a very efficient combination of the two algorithms.

For completeness, let us highlight the temporary increase for the error in density appearing in Fig. 14 when
MDD is used on P2. Analogously, the energy of the current solution, which is actually below the reference
energy, also increases. In fact, this is due to a loss of precision in the orthonormality constraints. In MDD,
these constraints are not imposed exactly at each iteration, but only approximately (see Eq. (3.12)).

Finally, we report in Figs. 16–18 the results obtained with MDD for the largest possible case that can be
performed on our platform, owing to memory limitation. We used the initial guesses obtained with the strat-
egy I3. Notice that for the local step the memory requirement scales linearly with respect to the number nm of
monomers, while for the global step, the memory requirement is independent of nm. Therefore, for large poly-
mers, the memory needed by MDD is controlled by the local step. In contrast, for small polymers, the most
demanding step in terms of memory is the global step.

5. Conclusions and remarks

The domain decomposition algorithm introduced above performs well, in comparison to the two standard
methods considered. More importantly, our approach is an effective preconditioning technique for DMM iter-
ations. Indeed, MDD provides a rapid and accurate approximation, both in terms of energy and density
matrix, regardless of the quality of the initial guess. In contrast, DMM outperforms MDD when the initial
guess is good, but only performs poorly, or may even diverge, when this is not the case. The combination
of the two methods seems to be optimal. More generally, our MDD algorithm could constitute a good pre-
conditioner to all variational methods, such as the orbital minimization method [26].

Regarding the comparison with DMM, the following comments are in order.

� All our calculations have been performed on a single processor machine. Potentially, both DMM and
MDD should exhibit the same speed-up when parallelized. We therefore consider the comparison valid,
at least qualitatively, for parallel implementations. The parallelization of the MDD is currently in progress,
and hopefully will confirm the efficiency of the approach.
� We recall the Fermi level has to be provided to the DMM method. This is an additional argument in favor

of the MDD approach.
� The MDD method, in contrast to the other linear scaling methods, does not perform any truncation in the

computations. So, once the profile of C is choosen, the method does not suffer of any instabilities, contrary
to DMM (or OM) for which divergences have been observed for the polymer P3.
� The domain decomposition method makes use of several threshold parameters. For the three polymers we

have considered, the optimal values of these parameters, except for the stopping criterion �a (Eq. (3.19)), are
the same. We do not know yet if this interesting feature is a general rule.
� Recall our method solves problem (2.2), which is only an approximation of problem (2.1). Therefore, the rel-

ative error obtained in the limit is only a measure of the difference between (2.2) and (2.1). In principle, such a
difference could be made arbitrarily small by an appropriate choice of the parameters of problem (2.2).
� Finally, let us emphasize that there is much room for improvement in both the local and the global steps.

We have designed an overall multilevel strategy that performs well, but each subroutine may be signifi-
cantly improved. Another interesting issue is the interplay between the nonlinear loop in the Hartree–Fock
or Kohn–Sham problems (self-consistent field – SCF – convergence [7,14,20]) and the linear subproblem
considered in the present article. Future efforts will go in these directions.
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